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Abstract. The state of the electrons in a charge-density wave (CDW) sliding at arbitrary velocity
and with arbitrary electron–phonon coupling constant is discussed. The mean-field framework
deals directly with the quantum mechanics of a system having non-energy-eigenstate solutions. The
quasiparticle approximation is replaced by a more accurate electron–hole condensate. Corrections
to the uniform current, which become important at moderate electron–phonon coupling or at high
CDW speed, show that the Fermi sea is swept along with a velocity slightly less than the velocity
of the CDW. Corrections to the effective energy gap for photon absorption are also discussed.

1. Introduction

The dynamics of a charge-density wave (CDW) in a quasi-one-dimensional conductor has been
widely studied [1–13] (see Grüner [10] for a review). As the CDW slides over the lattice, the
electrons comprising the wave experience a time-dependent interaction. This time dependence
introduces a subtlety in the electron wave functions which has not been properly taken into
account so far in the literature. To ‘paraphrase’ the quantum mechanics occurring here, the
wave function for a single electron near the Fermi surface interacting via lattice vibrations with
a hole state on the other side of the Fermi surface takes the form

|ψ(t)〉 = ae−iEat |k1〉 + be−iEbt |k2〉. (1)

The interesting fact here is that, e.g.,

|φ(t)〉 = ce−iEat |k1〉 (2)

alone is not a solution of the Schrödinger equation for the electron. Due to the time dependence
in the interaction, only wave functions of the form (1) are valid. One could call wave functions
of the form (2) quasiparticle solutions. For weak coupling(g � EF ), the errors incurred
in treating quasiparticles as actual solutions are not significant. However, at larger coupling
the errors mount. For the electron–phonon coupling typically encountered in sliding CDW
systems, the corrections to the uniform current turn out to be about 0.1% at low CDW velocities,
and somewhat more at higher velocities.

It is the purpose of the first part of this paper to derive a solution analogous to equation (1),
but for a whole band of electrons, then to find the uniform current corresponding to it. In a
similar way the time-dependent interaction modifies the effective photon absorption spectrum.
This is discussed in the second part of the paper.
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The theory is a mean-field one set up for zero temperature. The focus is on the electrons
as they interact with a time-dependent potential formed by a moving periodic lattice distortion
(PLD). A similar Hamiltonian has been considered by Horovitz [8]. The motion of the CDW
and the accompanying PLD are assumed to result from some previous external field, similarly
to how currents in a superconductor might be set up. There is no dissipation, so this field is
not included in the Hamiltonian describing the electrons.

The model is introduced in section 2. The spectrum and the solution having the lowest
average energy are derived in section 3. The uniform current for this solution is found in
section 4. The energy gap and photon absorption are discussed in section 5.

2. The model

In order to focus on the central feature the theory will be pared to the bone. Electron–electron
interactions, pinning, dissipation, and other thermal effects are omitted. The theory applies to
a single electron band, not too full and not too empty, taken to be about half-full so that each
electron state can be paired with a hole state.

Consider first the general Hamiltonian

Hgen =
∑
k

εkc
+
k ck +

∑
q

ωqb
+
qbq +

∑
k,q

gkqc
+
k+qck(bq + b+

−q). (3)

Here thecs are electron operators, thebs are phonon operators, andgkq is the electron–phonon
coupling constant. The sum over wave vectorsk is meant to imply also a sum over electron
spin.

Next, narrow attention to a state with a travelling phonon wave at wave vectorq = Q =
2kF described by an order parameter

geiωt = gkFQ〈bQ + b+
−Q〉. (4)

In real space this corresponds to a phonon wave with an amplitude〈y〉 at positionx of

〈y〉 ∼ cos(Qx + ωt). (5)

The mean-field Hamiltonian for the electrons in this phonon wind is

H =
∑
k

εkc
+
k ck + g

∑
k

[eiωtc+
k+Qck + e−iωtc+

k ck+Q]. (6)

The sum overk will be restricted to−2kF < k < 0. This simplification causes each relevant
k-state to be paired with just one other state. This is a good approximation since the difference
in energy between interacting states is lowest for these pairings. Since the calculation is done
at zero temperature, all electron states in the band are paired to make the CDW condensate.

3. The spectrum and solution

A typical pair of terms inH is (see figure 1)

H1 = ε1c
+
1c1 + ε2c

+
2c2 + [geiωtc+

1c2 + h.c.]. (7)

Let |ψ〉 represent a state of the electron evolving under HamiltonianH1. Solving
H1|ψ〉 = E|ψ〉 gives the energy eigenvalues

E± = (ε1 + ε2)

2
±
√
g2 +

(ε1− ε2)2

4
. (8)

Upon measurement of the electron’s energy, of course one of the two values will be obtained.
This is well accepted (see, e.g., reference [14]). This gives the spectrum shown in figure 2.
Note that there is no dependence onω, i.e. on the velocityV of the wave(V = ω/Q).
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Figure 1. The band structure showing a pair of interacting states.

Figure 2. The spectrum ofH .

At this stage one could make a time-dependent gauge transformation and find the quasi-
particle spectrum (see Bjelis [9]). However, it is important to realize that there is an error
made in treating the electron as a quasiparticle with definite energy. It is the goal of the present
work to avoid this error, and see what corrections ensue. Here the electron states are treated
accurately in pairs, then summed to give the band result. As a price to pay, the expression for
the uniform current has a less classical form, and the effective energy gap becomes process
dependent.

First the solution to

i
d|ψ〉
dt
= H1|ψ〉 (9)

is found (Planck’s constant is temporarily set equal to 2π ). The solution is written as

|ψ〉 = a1(t)|1〉 + a2(t)|2〉 (10)

where

|1〉 = c+
1|0〉 |2〉 = c+

2|0〉 (11)

and|0〉 is the no-particle state. One finds

a1 = γ1eiα1t + γ2eiα2t (12)

a2 = −g−1e−iωt [γ1(ε1 + α1)e
iα1t + γ2(ε1 + α2)e

iα2t ] (13)
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where

α1 = 1

2
[ω − (ε1 + ε2) +

√
4g2 + (ε1− ε2 + ω)2] (14)

α2 = 1

2
[ω − (ε1 + ε2)−

√
4g2 + (ε1− ε2 + ω)2]. (15)

γ1 andγ2 are arbitrary, subject to the normalization condition

1= [1 + g−2(ε1 + α1)
2]|γ1|2 + [1 + g−2(ε1 + α2)

2]|γ2|2. (16)

Evaluating the expectation value ofH1 for a solution yields

〈H1〉 = 〈H1〉t−dep+ 〈H1〉t−indep (17)

where

〈H1〉t−dep= (−1)(ε1 + ε2 + α1 + α2)(γ1γ
∗
2 ei(α1−α2)t + c.c.) (18)

〈H1〉t−indep= |γ1|2[ε1− 2(ε1 + α1) + g−2ε2(ε1 + α1)
2]

+ |γ2|2[ε1− 2(ε1 + α2) + g−2ε2(ε1 + α2)
2]. (19)

The solution with the lowest time-averaged energy hasγ2 = 0, with no time-dependent
part. For simplicity, measure energies from the Fermi level, and specialize to the case where
ε1 = −ε2 (=ε, say). Then the expectation value ofH1 for this state of lowest average energy
(call it the ground state) is evaluated as

〈H1〉ground = − 2g2 + ε(2ε + ω)√
4g2 + (2ε + ω)2

(type 1 pairing). (20)

Carrying out a similar analysis for a pairing of states with the positive-momentum state being
below the Fermi surface (type 2 pairing), one finds

〈H1〉ground = − 2g2 + ε(2ε − ω)√
4g2 + (2ε − ω)2

(type 2 pairing). (21)

Figure 3 shows the average energies of ground-state pairs as well as the average energies of
the sky state (largest-energy) pairs.

Figure 3. The range of average energies for solutions.

Let us review this section. Equation (8) (the spectrum) gives the two possible results arising
from a measurement of the electron’s energy. One might be tempted to find the solutions
corresponding to each one of these energies. But such solutions do not exist. The time
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dependence in the interaction causes the solutions not to have a definite energy, but instead to
have only an amplitude for having each of the spectral energies. This solution is now kept intact
for each of the electrons in the band while the physical properties of the band are calculated.

4. The current

Consider simultaneously a pair of states (1, 2) with type 1 pairing and a pair (3, 4) with
type 2 pairing, with members of a pair above and below the Fermi level by an energyε.
Approximating the states as being free with an effective massm, and linearizing about the
Fermi level(k1 = kF +δ, k2 = −kF +δ, k3 = −kF − δ, k4 = kF − δ), then the 0 andQ Fourier
components of the current density are given by

〈j0〉2pairs = QekF

m
[〈c+

1c1〉 − 〈c+
2c2〉 + 〈c+

4c4〉 − 〈c+
3c3〉] (22)

〈jQ〉2pairs = Qeδ

m
[〈c+

1c2〉 − 〈c+
4c3〉]. (23)

HereQe is the charge on the electron. The Fourier components of the total current can
now be evaluated. In particular,

〈j0〉total = 2N(0)
∫ Ec

0
〈j0〉2pairs dε. (24)

Here 2N(0) is the density of electron states at the Fermi level including spin, andEc is the
cut-off energy corresponding to the bandwidth.

Evaluation of equation (22) for the ground state yields

〈j0〉2pairs = QekF

m

[
g2 − (ε + α1)

2

g2 + (ε + α1)2
− g

2 − (ε + α3)
2

g2 + (ε + α3)2

]
(25)

whereα3 is justα1 with ω replaced by−ω. Integrating (24) yields

〈j0〉 = −N(0)QekF

m

[√
4g2 + (2Ec + ω)2 −

√
4g2 + (2Ec − ω)2

]
. (26)

In the limit of low CDW velocity(ω � g), equation (26) becomes

〈j0〉 = −
(

2N(0)QekF

m

)(
Ecω√
E2
c + g2

)(
1− 1

8

g2ω2

(E2
c + g2)2

)
. (27)

For the parabolic band assumed here,Ec = h̄2k2
F /m, so upon introducing the necessary factors

to express all quantities in conventional (SI) units, i.e.gcon = h̄g, jcon = h̄2j , the expression
for the total uniform current becomes

〈j0〉 = −2

(
N(0)Qe

kF

)(
E2
cω√

E2
c + g2

)(
1− 1

8

g2h̄2ω2

(E2
c + g2)2

)
. (28)

On the other hand, for two electrons to be merely swept along at the same speed as the CDW
one would have〈j0〉 = ρ0V , which withV = ω/(2kF ) would read

〈j0〉2pairs, swept along = −(2Qe)

(
ω

2kF

)
(29)

so this uniform current would be

〈j0〉total, swept along = −2N(0)EcQe

(
ω

kF

)
. (30)
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For comparison purposes, the actual uniform current can be written as

〈j0〉 = 〈j0〉swept along
(

Ec√
E2
c + g2

)(
1−

(
g2

E2
c

)( 1
2mV

2

Ec

))
. (31)

This form illustrates separately the corrections due to stronger coupling and to high CDW
velocities.

The usual quasiparticle picture has〈j0〉 = 〈j0〉swept along. This comes from writing the
uniform current as

〈j0〉 = 2Qe

∫ (
dE

dk

)
dk (32)

and using a band structure modified by the sliding CDW (see, e.g., reference [10]). The error
enters upon assuming that the (quasi)particles have a definite energy. In contrast, here the
condensate consists of electrons each having an amplitude for being in two different energy
eigenstates.

To clarify the above picture it is useful to consider the opposite case of strong coupling
(g � Ec). At large coupling all pairs of electron states|+k〉 and|−k〉would be occupied with
almost the same probability, namely 1/2. Physically, the electrons are being strongly scattered
by the ions. Nearly equal occupation of electron states of opposite momentum means that the
uniform current will be small. However, the velocity of the sliding CDW can still be large.
This is like ripples on a pond, where the ripples can be moving along at any speed while the
body of water below can be still, giving a small uniform current.

The corrections to be expected can be estimated for a typical weakly coupled system.
Following Gr̈uner [10], the coupling constantg can be written asg2 = λ(h̄ω0)EF , whereλ
is the dimensionless electron–phonon coupling constant, andω0 is the phonon frequency at
wave vector 2kF . λ can in turn be related to the Peierls transition temperatureTP through the
BCS equation for the energy gap and the relation1 = 1.76kBTP . This yields

g2

E2
c

= (h̄ω0)EF

E2
c log(4Ec/1)

. (33)

Evaluating this expression for the well-studied compound NbSe3, withEc ≈ 1 eV,EF ≈ 1 eV,
1 ≈ 10−2 eV, h̄ω0 ≈ 10−2 eV, gives(g/Ec)2 ≈ 0.0017. Using this value in equation (31),
the actual low-velocity current is lower than the swept-along prediction by about 0.1%. Only
at velocities sizable compared to the Fermi velocity is the velocity correction factor important.
How robust is this result? The linear band approximation could result in a changed effective
energy cut-off. But all states are connected by a single wave vector, so, e.g., wave-vector
dependence of the coupling constant will not be important.

In a given experimental situation there may be other effects clouding the picture, such as
finite temperatures and impurities. However, the effects of non-zero electron–phonon coupling
and non-zero velocity in a sliding wave are present in all sliding CDW systems—hence the
attention paid to them here.

5. The energy gap and photon absorption

For a CDW sliding with any non-zero velocity, technically there is no energy gap. This shows
up in the present analysis in the fact that one can continuously vary the coefficientsγ1, γ2 and
arrive at solutions with average energies ranging from the ground-state energy continuously
upward. However, in an experimental setting the question is which excitations can produce
these intermediate states.
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Figure 4. Four states involved in photon absorption.

Regarding photon absorption, there is an effective gap, since electron states of given
momentum difference must be separated by a large energy. The goal here is to find the basic
effect that the sliding CDW has on photon absorption. Spin and three-dimensional consider-
ations are omitted.

Absorption of a photon requires a relatively small momentum for the energy involved, so,
e.g., electron states 1 and 4 in figure 4 below might be relevant. But since interaction with the
phonons couples these electron states to states 2 and 3, absorption of a single photon actually
involves four electron states.

After interaction with the lattice, the electron state formed from states 1 and 2 is not an
energy eigenstate, and similarly for the state formed from 3 and 4. So it is not quite correct to
merely consider photon absorption across the Peierls gap, as determined by, say, the average
of the Hamiltonian,〈H 〉. Given the above set of four states 1, 2, 3, 4, characterized by energies
ε1 andε3, the following procedure leads to the photon frequency absorbed by the set of states.

Using the number representation,|n1, n2, n3, n4, nphoton〉, the state (including a photon of
frequencyν) before photon absorption is

|9i〉 = e−iνt {f13|10101〉 + f14|10011〉 + f23|01101〉 + f24|01011〉}. (34)

Heref13(t) = a1(t)a3(t), etc.
The interaction can be taken to be

H ′1234= ha(c†
1c4 + c†

2c3) + h.c. (35)

wherea is a photon destruction operator for a photon with momentumk1− k4 (=k2− k3) and
h is the strength of interaction. In general, the state of the two electrons and one photon can
be written as

|9all(t)〉 = λi(t)|9i(t)〉 + λf (t)|9f 〉 (36)

with λi(0) = 1, λf (0) = 0 and|9f 〉 = |11000〉. Then one has

H ′1234|9i(t)〉 = he−iνt (f13 + f24)|11000〉. (37)

Evaluation off13 + f24 yields

f13 + f24 + [1 + g−2(ε1 + α1)(ε3 + α3)]γ1γ3ei(α1+α3)t . (38)

Following a procedure like that for deriving Fermi’s Golden Rule (see, e.g., reference [15]),
the transition probability rateP is found to be

P = 4π |h|2|γ1|2|γ3|2[1 + g−2(ε1 + α1)(ε3 + α3)]
2δ(ν − α1− α3). (39)
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The important fact here is that the photon absorption peaks at a frequency ofν = α1 + α3,
i.e. at a frequency of

ν = (1/2)[√(4g2 + (2ε1 + ω)2) +
√
(4g2 + (2ε3− ω)2)]. (40)

Thus the effective band structure appropriate to photon absorption is

Ephoton absorption = √(g2 + (ε + ω/2)2) (41)

written in terms of the non-interacting band energyε = v(k − kF ). Comparison with equ-
ation (20) shows that whereas the average energy gap decreases with increasing CDW velocity
for states near the gap, the energy gap relevant to photon absorption increases with increasing
CDW velocity for these same states.

6. Conclusions

The focus has been on what an electron experiences while being part of a sliding CDW.
Conceptually, the difference between the usual viewpoint and the one espoused here is large.
In the usual view, quasiparticles are imagined to be in definite energy states. An increase in the
uniform current arises from new states being occupied. However, the particles are not really
in definite energy states. In the new picture the notion of a condensate consisting of electrons
each having an amplitude for being in each of two energy eigenstates is embraced. An increase
in current arises from an increased amplitude for being in the upper energy state.

For a typical sliding CDW, the numerical differences between the two approaches are
small. This arises, as seen in equation (33), mainly due to the small phonon energy compared
to the electron bandwidth.

The uniform current turns out to be somewhat less than if the Fermi sea were swept along
with the velocity of the CDW. The effective energy gap for photon absorption is a bit greater
than that expected for a band structure based on average energy.
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